Direct observation of chemical oscillation at a water/nitrobenzene interface with a sodium-alkyl-sulfate system.
نویسندگان
چکیده
The oscillation of the interfacial tension and electrical potential at a water/nitrobenzene interface was observed with homologous anionic surfactant molecules, sodium-alkyl-sulfates. Concerning small molecules with a short hydrophobic carbon chain, the oscillation period and amplitude decreased with a decrease of the length of the alkyl chain. On the other hand, when surfactant molecules with a long hydrophobic carbon chain were used, no remarkable periodic oscillation occurred after the first oscillation. In all systems, an interfacial flow by Marangoni convection was observed when the oscillation took place. By monitoring the movement of carbon powder scattered on the liquid/liquid interface with a CCD camera, we could observe that the liquid/liquid interface expanded outward from the area on which the surfactant molecules adsorbed when the oscillation occurred. When the small molecule was used, the speed of expansion of the interface (flow speed) was small and shrinkage followed by expansion of the interface repeatedly occurred. However, when the large molecule was used, the flow speed was large and expansion occurred only one time. These results show that hydrodynamic factors and surface activities are important in chemical oscillation systems.
منابع مشابه
Effects of surfactants and electrolytes on chemical oscillation at a water/nitrobenzene interface investigated by quasi-elastic laser scattering method.
We used a time-resolved interfacial tension measurement method with quasi-elastic laser scattering to investigate the effects of electrolytes and various surfactants on the nonlinear dynamics of the chemical oscillation that occurred at a water/nitrobenzene interface when a surfactant was added to the interface through a capillary. For both cationic and anionic surfactants, an electrolyte in th...
متن کاملررسی اثر مخلوط مواد فعال سطحی روی پدیده پیوند قطره
In this research, effect of bicomponent mixed surfactant was studied on drop interface coalescence phenomenon in ambient temperature. First basic chemical system was water and toluene and 0.01 gr of sodium dodecyle sulfate (SDS) and the second basic system was water and toluene and 0.01 gr of cethyl trimethy amonium bromide (CTAB). Various weight fractions of second surfactant including 2-hepta...
متن کاملSurfactant headgroup orientation at the air/water interface.
We have used vibrational sum-frequency spectroscopy to provide the first measurement of the spectrum and orientation of the polar headgroup of a charged alkyl surfactant at the air/water interface. Sum-frequency spectra of sodium dodecyl sulfate (SDS) are used to arrive at all participating elements of the second-order susceptibility tensor. We use these chi(2) elements, together with calculate...
متن کاملSuggestion of New Correlations for Drop/Interface Coalescence Phenomena in the Absence and Presence of Single Surfactant
After designing and constructing a coalescence cell, drop/interface coalescence phenomenon was studied in the absence and presence of single surfactant.Two surface active agents of sodium dodecyl sulfate and 1-decanol were used. Distilled water was used as dispersed phase. Toluene, n-heptane and aqueous 60% (v/v) of glycerol were selected as continuous phases, separately. It was found that ...
متن کاملThe effect of water containing sodium sulfate ions on strength of concrete of aquaculture ponds and channels
Aquaculture is among the oldest occupations of human being. Over the past quarter of century, the aquaculture industry has grown rapidly. The effect of water containing sodium sulfate on long term compressive strength of concrete of fishing ponds and channels is investigated in this paper. Aim of this paper was to analyze the strength of concrete channels and of aquaculture which are in direct ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Analytical sciences : the international journal of the Japan Society for Analytical Chemistry
دوره 20 3 شماره
صفحات -
تاریخ انتشار 2004